Molecular Dynamics Simulations of Ion Sputtering of Metal Surfaces

J. D. Kress, D. E. Hanson, A. F. Voter

Los Alamos National Laboratory

C.-L. Liu, X.-Y. Liu, D. Coronell

Motorola

Chandra (Saru) Saravanan

U. Mass.- Amherst

Work at Los Alamos supported by Cooperative Research and Development Agreements (CRADAs) with the Semiconductor Research Corporation (SRC), Motorola, and Intel

Introduction

- Ionized physical vapor deposition (PVD) is used in Cu interconnect technology in the manufacture of integrated circuits.
- The interaction of energetic ions with the growing Cu film is not well characterized by a constant sticking coefficient or sputter yield (one that is independent of ion impact angle of energy).
- More detailed information is necessary as input for realistic feature scale modeling of film coverage in the metallization of micron-sized features (vias and trenches) in integrated circuits.

Summary of Molecular Dynamics Simulations

1. Conditions are representative of an ionized PVD process; Cu and Ar ions generated in the plasma are accelerated through a plasma sheath potential at the surface of the substrate.

ion

θ

2. For each impact angle θ and energy considered, the following averaged properties were calculated:

- sputter yield
- sticking probability
- thermal accomodation coefficient
- average reflection angle of the impact ion
- average emission angle of the sputter products

Details of the Molecular Dynamics Simulations

1. Interatomic potentials

- Embedded atom method (EAM) for Cu-Cu interactions
- Ziegler-Biersack-Littmark pair potential for Ar-Cu interactions
- Moliere pair potential for Ar-Ar interactions
- Neutral-atom potentials are appropriate; the incident ion is neutralized well before impact by a fast Auger process.

2. Simulation

- 972 Cu atoms, fcc crystal, 12x9x9 atoms (x,y,z), 108 atoms per layer
- Periodic boundary conditions in x and y, free in z (normal to surface)
- Bottom two layers (216 atoms) rigidly fixed at all times
- An impact atom with desired incident energy and impact (polar) angle was positioned randomly in (x,y) and azimuthal angle above the surface.
- For each impact angle and energy, a series of 150 impact events were run, using a pristine T = 300 K Cu (111) surface for each event.
- Results were insensitive to the size of the integration time step, the use of a larger substrate, or the use of a thermostat to dissipate deposited energy.

MD simulations predict sticking probability as a function of both energy and impact angle

Within 20° of normal, everything sticks

Minimum in sticking probability at $\sim 70^{\circ}$

Sticking probability increases for impact angles $> 70^{\rm o}$

Surface trapping and desorption simulated with Molecular Dynamics

Surface Trapping: Energy loss correlates with oscillation

- 35 eV Cu atom incident on Cu(111), $\theta = 90^{\circ}$
- Atom oscillates 2 3 Å above surface, $\tau \sim 0.2$ ps
- Energy loss correlates with minimum of oscillation
- Average energy loss rate is constant to 10 eV

Los Alamos National Laboratory

Theoretical Division

D E Hanson

11/02/1999

Upturn in sticking coefficient is due to surface trapping

Impact atom can become trapped, oscillating normal to the surface

Average energy loss is piecewise linear

Atom can traverse hundreds of Å before adsorbing

Phenomenological model developed to describe surface trapping

- MD simulations give energy loss and desorption probability for a single "bounce"
- Equations solved iteratively from impact energy down to 10 eV
- Energy loss is independent of energy after initial impact for Cu/Cu and the same for both (001) and (111) surfaces
- Desorption probability increases with energy

$$P_{stick} = \prod_{i=1}^{n} (1 - P_{desorb}(E_i))$$

$$E_i = E_o - i\Delta E$$

Predictions by phenomenological model agree with full MD results

Comparison of model and full MD: Sticking probability vs. energy for Cu^+ on T=300K Cu(111) at 80° and 90° incidence

Comparison of model and full MD: Predicted reflected energy distribution for 50 eV Cu⁺ on Cu(111) at 80° incidence

Cu Ions Impinging on a Cu(111) Surface: Molecular Dynamics Simulations

Sticking Probability (Various Impact Energies)

Ar Ion Sputtering of a Cu(111) Surface: Molecular Dynamics Simulations

Al Ion Sputtering of a Al(111) Surface

Key for figure:

- MD/Interatomic Potential:
 - LANL=LANL EAM
 - LANL/ZBL = EAM + ZBL Pair
 - LANL/Abr = EAM + Abrahamson Pair
 - Vogl et al. = Adams/Ercolessi EAM
 - + Abrahamson Pair
- Experiment:
 - Empirical = "Universal" fit to data for
 - many ions/metals
 - Exp't = data for Al + /Al

• For Al dimers: LANL/ZBL agrees well with accurate electronic structure density functional calculations

Conclusions:

Molecular Dynamics Simulations of Cu and Ar Ion Sputtering of Cu (111) Surfaces

- The following averaged properties were computed: sputter yield, sticking probability, thermal accommodation coefficient, reflection angle of the impact ion and emission angle of the sputter products.
- Sticking probabilities and sputter yields were found to vary as a function of both impact angle and energy.
- Calculated sputter yields at normal incidence for both Ar and Cu sputtering of Cu were in good agreement with experiment.
- For grazing incidence impacts, the sticking probability for energetic Cu ions (E < 100 eV) decreases then increases as a function of impact angle. Similar behavior has been observed in the trapping of Ar on Pt surfaces (Head-Gordon et al., 1990).
- The results from the simulations have been implemented in feature scale modeling of film coverage in the metallization of micron-sized features (vias and trenches) in integrated circuits.